Signalverarbeitung Digitale Filter Digitale Filter sind durch essenziell abgetastete Systeme. Die Eingangs - und Ausgangssignale werden durch Abtastwerte mit gleichem Zeitabstand dargestellt. Finite Implulse Response (FIR) - Filter sind gekennzeichnet durch ein Zeitverhalten, das nur von einer gegebenen Anzahl der letzten Abtastwerte des Eingangssignals abhängt. Anders ausgedrückt: Sobald das Eingangssignal auf Null abgesunken ist, wird der Filterausgang nach einer bestimmten Anzahl von Abtastperioden das gleiche tun. Der Ausgang y (k) ist durch eine Linearkombination der letzten Eingangsabtastwerte x (k i) gegeben. Die Koeffizienten b (i) geben das Gewicht für die Kombination an. Sie entsprechen auch den Koeffizienten des Zählers der Z-Domain-Filtertransferfunktion. Die folgende Abbildung zeigt ein FIR-Filter der Ordnung N 1: Bei linearen Phasenfiltern sind die Koeffizientenwerte um das mittlere symmetrisch und die Verzögerungsleitung kann um diesen Mittelpunkt zurückgeklappt werden, um die Anzahl der Multiplikationen zu reduzieren. Die Übertragungsfunktion der FIR-Filter pocesses nur einen Zähler. Dies entspricht einem Nullfilter. FIR-Filter erfordern typischerweise hohe Ordnungen in der Größenordnung von einigen Hunderten. Somit benötigt die Wahl dieser Art von Filtern eine große Menge an Hardware oder CPU. Trotzdem ist ein Grund, eine FIR-Filter-Implementierung zu wählen, die Fähigkeit, eine lineare Phasenreaktion zu erreichen, die in einigen Fällen eine Anforderung sein kann. Trotzdem hat der Fiter-Designer die Möglichkeit, IIR-Filter mit guter Phasenlinearität im Durchlaßband wie Bessel-Filter zu wählen. Oder ein Allpassfilter zu entwerfen, um die Phasenreaktion eines Standard-IIR-Filters zu korrigieren. Moving Average Filter (MA) Edit Moving Average (MA) Modelle sind Prozessmodelle in der Form: MA Prozesse ist eine alternative Darstellung von FIR Filtern. Durchschnittliche Filter Edit Ein Filter, der den Durchschnitt der N letzten Abtastwerte eines Signals berechnet. Es ist die einfachste Form eines FIR-Filters, wobei alle Koeffizienten gleich sind. Die Übertragungsfunktion eines Durchschnittsfilters ist gegeben durch: Die Übertragungsfunktion eines Durchschnittsfilters weist N gleich beabstandete Nullen entlang der Frequenzachse auf. Die Null bei DC wird jedoch durch den Pol des Filters maskiert. Daher gibt es eine größere Keule, die für das Filterdurchlassband verantwortlich ist. Cascaded Integrator-Comb (CIC) Filter Edit Ein Kaskadiertes Integrator-Kammfilter (CIC) ist eine spezielle Technik zur Implementierung von Durchschnittsfiltern, die in Serie geschaltet werden. Die Serienplatzierung der mittleren Filter verstärkt den ersten Lappen bei DC im Vergleich zu allen anderen Lappen. Ein CIC-Filter implementiert die Übertragungsfunktion von N Durchschnittsfiltern, die jeweils den Durchschnitt von R M Abtastwerten berechnen. Seine Übertragungsfunktion ist folglich gegeben durch: CIC-Filter werden verwendet, um die Anzahl der Abtastwerte eines Signals um einen Faktor R zu dezimieren oder, anders ausgedrückt, ein Signal mit einer niedrigeren Frequenz erneut abzutasten, wobei R 1 Abtastwerte aus R weggeworfen werden. Der Faktor M gibt an, wie viel von dem ersten Lappen durch das Signal verwendet wird. Die Anzahl der mittleren Filterstufen, N. Wie gut andere Frequenzbänder gedämpft werden, auf Kosten einer weniger flachen Übertragungsfunktion um DC herum. Die CIC-Struktur ermöglicht es, das gesamte System mit nur Addierern und Registern zu implementieren, wobei keine Multiplikatoren verwendet werden, die in Bezug auf Hardware gierig sind. Eine Abwärtsabtastung mit dem Faktor R erlaubt die Erhöhung der Signalauflösung durch log 2 (R) (R) Bits. Kanonische Filter Bearbeiten Kanonische Filter implementieren eine Filterübertragungsfunktion mit einer Anzahl von Verzögerungselementen gleich der Filterreihenfolge, einem Multiplikator pro Zählerkoeffizienten, einem Multiplikator pro Nennerkoeffizienten und einer Reihe von Addierern. Ähnlich wie aktive Filter kanonische Strukturen zeigte sich diese Art von Schaltungen sehr empfindlich gegenüber Elementwerten: eine kleine Änderung in Koeffizienten hatte einen großen Einfluss auf die Übertragungsfunktion. Auch hier hat sich das Design von aktiven Filtern von kanonischen Filtern zu anderen Strukturen wie Ketten zweiter Ordnung oder Leapfrog-Filtern verschoben. Kette der Sektionen zweiter Ordnung Edit Eine Sektion zweiter Ordnung. Oft als Biquad bezeichnet. Implementiert eine Übertragungsfunktion zweiter Ordnung. Die Übertragungsfunktion eines Filters kann in ein Produkt aus Übertragungsfunktionen aufgeteilt werden, die jeweils einem Paar von Pole und möglicherweise einem Paar von Nullen zugeordnet sind. Wenn die Übertragungsfunktionen ordnungsgemäß ungerade sind, muss ein erster Ordnungsteil zur Kette hinzugefügt werden. Dieser Abschnitt ist dem realen Pol und dem realen Nullpunkt zugeordnet, falls einer vorhanden ist. Direct-Form 1 Direct-Form 2 Direct-Form 1 Transponierte Direct-Form 2 transponiert Das von der folgenden Abbildung transponierte Direct-Formular 2 ist besonders interessant in Bezug auf die benötigte Hardware sowie die Signal - und Koeffizienten-Quantisierung. Digitale Leapfrog-Filter Filterstruktur bearbeiten Digitale Leapfrog-Filter basieren auf der Simulation von analogen aktiven Leapfrog-Filtern. Der Anreiz für diese Wahl ist, von den ausgezeichneten Passband-Empfindlichkeitseigenschaften der ursprünglichen Leiter-Schaltung zu erben. Das folgende 4. Ordnung allpolige Tiefpass-Leapfrogfilter kann als digitale Schaltung implementiert werden, indem die analogen Integratoren durch Akkumulator ersetzt werden. Das Ersetzen der Analogintegratoren durch Akkumulatoren entspricht der Vereinfachung der Z-Umwandlung zu z 1 s T. Die die beiden ersten Terme der Taylorreihe von z e x p (s T) sind. Diese Näherung ist gut genug für Filter, bei denen die Abtastfrequenz viel höher ist als die Signalbandbreite. Transferfunktion Edit Die Zustandsraumdarstellung des vorangehenden Filters kann wie folgt geschrieben werden: Aus dieser Gleichung kann man die A, B, C, D Matrizen schreiben als: Aus dieser Darstellung lassen sich Signalverarbeitungswerkzeuge wie Octave oder Matlab grafisch darstellen Den Frequenzgang des Filters oder seine Nullen und Pole zu untersuchen. In dem digitalen Leapfrog-Filter stellen die relativen Werte der Koeffizienten die Form der Übertragungsfunktion (Butterworth, Chebyshev.) Ein, während ihre Amplituden die Grenzfrequenz einstellen. Das Dividieren aller Koeffizienten um einen Faktor von zwei verschiebt die Cutoff-Frequenz um eine Oktave (auch einen Faktor von zwei) nach unten. Ein spezieller Fall ist der Buterworth-Filter 3. Ordnung, der über Zeitkonstanten mit relativen Werten von 1, 12 und 1 verfügt. Dadurch kann dieses Filter in Hardware ohne Multiplikator implementiert werden, jedoch mit Verschiebungen. Autoregressive Filter (AR) Edit Autoregressive (AR) Modelle sind Prozessmodelle in der Form: Wo u (n) die Ausgabe des Modells ist, ist x (n) die Eingabe des Modells und u (n - m) sind vorherige Abtastwerte des Modellausgangswertes. Diese Filter werden autoregressiv genannt, da die Ausgangswerte auf der Grundlage von Regressionen der vorherigen Ausgabewerte berechnet werden. AR-Prozesse können durch ein Allpol-Filter dargestellt werden. ARMA Filter Edit Autoregressive Moving-Average Filter (ARMA) sind Kombinationen von AR - und MA-Filtern. Der Ausgang des Filters ist als Linearkombination sowohl der gewichteten Eingangs - als auch der gewichteten Ausgangssamples gegeben: ARMA-Prozesse können als digitales IIR-Filter mit beiden Pole und Nullen betrachtet werden. AR-Filter werden in vielen Fällen bevorzugt, da sie mit den Yule-Walker-Gleichungen analysiert werden können. MA - und ARMA-Prozesse hingegen können durch komplizierte nichtlineare Gleichungen analysiert werden, die schwer zu studieren und zu modellieren sind. Wenn wir einen AR-Prozeß mit Abgriff-Gewichtungskoeffizienten a (einen Vektor von a (n), a (n - 1).) Einen Eingang von x (n) haben. Und eine Ausgabe von y (n). Können wir die yule-walker Gleichungen verwenden. Wir sagen, dass x 2 die Varianz des Eingangssignals ist. Wir behandeln das Eingangsdatensignal als Zufallssignal, auch wenn es ein deterministisches Signal ist, weil wir nicht wissen, was der Wert ist, bis wir ihn erhalten. Wir können die Yule-Walker-Gleichungen folgendermaßen ausdrücken: wobei R die Kreuzkorrelationsmatrix der Prozeßausgabe ist und r die Autokorrelationsmatrix der Prozeßausgabe ist: Varianzbearbeitung Wir können zeigen: Wir können die Eingangssignalabweichung als: , Expandiert und ersetzt r (0). Können wir die Ausgangsvarianz des Prozesses auf die Eingangsvarianz beziehen: Frequenzgang des Moving Average Filters und FIR Filter Vergleichen Sie den Frequenzgang des Moving Average Filters mit dem des regulären FIR Filters. Stellen Sie die Koeffizienten des regulären FIR-Filters als Folge von skalierten 1s ein. Der Skalierungsfaktor ist 1filterLength. Erstellen Sie ein dsp. FIRFilter-Systemobjekt und legen Sie seine Koeffizienten auf 140 fest. Um den gleitenden Durchschnitt zu berechnen, erstellen Sie ein dsp. MovingAverage-Systemobjekt mit einem gleitenden Fenster mit der Länge 40, um den gleitenden Durchschnitt zu berechnen. Beide Filter haben die gleichen Koeffizienten. Der Eingang ist Gaußsches weißes Rauschen mit einem Mittelwert von 0 und einer Standardabweichung von 1. Stellen Sie den Frequenzgang beider Filter mithilfe von fvtool dar. Die Frequenzantworten entsprechen genau, was beweist, dass das gleitende Mittelfilter ein Spezialfall des FIR-Filters ist. Zum Vergleich den Frequenzgang des Filters ohne Rauschen. Vergleichen Sie den Frequenzgang des Filters mit dem des idealen Filters. Sie können sehen, dass der Hauptlappen im Durchlassbereich nicht flach ist und die Wellen im Stopband nicht eingeschränkt sind. Der Frequenzgang des gleitenden Durchschnittsfilters stimmt nicht mit dem Frequenzgang des idealen Filters überein. Um ein ideales FIR-Filter zu realisieren, ändern Sie die Filterkoeffizienten zu einem Vektor, der keine Folge von skalierten 1s ist. Der Frequenzgang des Filters ändert sich und neigt dazu, sich näher an die ideale Filterantwort zu verschieben. Entwerfen Sie die Filterkoeffizienten anhand vordefinierter Filterspezifikationen. Beispielsweise ein FIR-Filter mit einer normierten Grenzfrequenz von 0,1, einer Durchlaßbandwelligkeit von 0,5 und einer Stoppbanddämpfung von 40 dB. Verwenden Sie fdesign. lowpass, um die Filterspezifikationen und die Designmethode zu definieren, um den Filter zu entwerfen. Die Antwort des Filters im Durchlaßbereich ist nahezu flach (ähnlich der idealen Reaktion), und das Stoppband hat Gleichstromgrenzen eingeschränkt. MATLAB und Simulink sind eingetragene Warenzeichen von The MathWorks, Inc. Bitte lesen Sie mathworkstrademarks für eine Liste anderer Marken, die Eigentum von The MathWorks, Inc. sind. Andere Produkt - oder Markennamen sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Eigentümer. Select Your CountryThe Simple Moving Average Filter Diese Seite beschreibt die einfache gleitende durchschnittliche Filter. Diese Seite ist Teil des Filters, der Teil eines Leitfadens zur Fehlererkennung und Diagnose ist. Der einfache gleitende Mittelwert filtert die letzten Werte des Filtereingangs für eine gegebene Anzahl von Eingängen. Dies ist das häufigste Beispiel der 8220moving durchschnittlichen 8221 (MA) Kategorie von Filtern, die auch als Finite-Impuls-Response-Filter (FIR-Filter) bezeichnet werden. Jede neuere Eingabe wird mit einem Koeffizienten für alle linearen MA-Filter multipliziert, und die Koeffizienten sind alle gleich für diesen einfachen gleitenden Durchschnitt. Die Summe der Koeffizienten beträgt 1,0, so daß der Ausgang schließlich mit dem Eingang übereinstimmt, wenn sich der Eingang nicht ändert. Sein Ausgang hängt gerade von den letzten Eingängen ab, anders als der exponentielle Filter, der auch seinen vorherigen Ausgang wieder verwendet. Der einzige Parameter ist die Anzahl der Punkte im Durchschnitt - die 8220-Fenstergröße8221. Verschieben der durchschnittlichen Sprungantwort Wie jedes MA-Filter vervollständigt es eine Sprungantwort in einer endlichen Zeit, abhängig von der Fenstergröße: Dieses einfache gleitende Durchschnittsbeispiel oben basierte auf 9 Punkten. Unter bescheidenen Annahmen ist es die optimale (Glättung) Schätzung für einen Wert am Mittelpunkt des Zeitintervalls, in diesem Fall, 4,5 Abtastintervalle in der Vergangenheit. Copyright 2010 - 2013, Greg Stanley
No comments:
Post a Comment